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A 3D pharmacophore model able to quantitatively predict inhibition constants was derived for
a series of inhibitors of Plasmodium falciparum dihydrofolate reductase (PfDHFR), a validated
target for antimalarial therapy. The data set included 52 inhibitors, with 23 of these comprising
the training set and 29 an external test set. The activity range, expressed as Ki, of the training
set molecules was from 0.3 to 11 300 nM. The 3D pharmacophore, generated with the HypoGen
module of Catalyst 4.7, consisted of two hydrogen bond donors, one positive ionizable feature,
one hydrophobic aliphatic feature, and one hydrophobic aromatic feature and provided a 3D-
QSAR model with a correlation coefficient of 0.954. Importantly, the type and spatial location
of the chemical features encoded in the pharmacophore were in full agreement with the key
binding interactions of PfDHFR inhibitors as previously established by molecular modeling
and crystallography of enzyme-inhibitor complexes. The model was validated using several
techniques, namely, Fisher’s randomization test using CatScramble, leave-one-out test to ensure
that the QSAR model is not strictly dependent on one particular compound of the training set,
and activity prediction in an external test set of compounds. In addition, the pharmacophore
was able to correctly classify as active and inactive the dihydrofolate reductase and aldose
reductase inhibitors extracted from the MDDR database, respectively. This test was performed
in order to challenge the predictive ability of the pharmacophore with two classes of inhibitors
that target very different binding sites. Molecular diversity of the data sets was finally estimated
by means of the Tanimoto approach. The results obtained provide confidence for the utility of
the pharmacophore in the virtual screening of libraries and databases of compounds to discover
novel PfDHFR inhibitors.

Introduction
Dihydrofolate reductase (DHFR) catalyzes a sequen-

tial reaction in the biosynthesis of thymidylate, which
is known to be essential for DNA synthesis and for
maintaining intracellular pools of tetrahydrofolate co-
factors. Inhibition of DHFR blocks the reduction of
dihydrofolate to tetrahydrofolate and prevents DNA
synthesis, resulting in cell death. The dihydrofolate
reductase domain of the bifunctional enzyme dihydro-
folate reductase-thymidylate synthase of Plasmodium
falciparum (PfDHFR-TS) is a validated target of anti-
malarial antifolates such as pyrimethamine (Pyr), cy-
cloguanil (Cyc), and other antifolates used for prophy-
laxis and treatment of Plasmodium falciparum infec-
tions.1-4 Unfortunately, Pyr and Cyc are facing the
emergence of resistant Plasmodium falciparum strains,
limiting their utility in the treatment of malaria. The
compromised clinical efficacy of these drugs and the lack
of a suitable vaccine have an enormous economic and
social impact, particularly in Africa where malaria
causes about 2 million deaths per year and a very high
level of morbidity. Therefore, there is urgent need to
search for new targets and/or new effective antifolate
antimalarials to combat the resistant parasites.5

During the past years, the structural basis of anti-
folate resistance has been investigated; homology mod-

els of PfDHFR6-8 have been reported and have been
exploited to investigate the molecular interactions
between the active site residues of the enzyme and
antifolates such as Pyr, Cyc, and WR99210 (6,6-dimethyl-
1-[3-(2,4,5-trichlorophenoxy)propoxy]-1,6-dihydro[1,3,5]-
triazine-2,4-diamine).1,6-8 We previously proposed a
“steric constraint hypothesis” to rationalize antifolate
resistance in PfDHFR. In agreement with the hypoth-
esis, structure-based design of inhibitors devoid of
substituents at a position where steric clash can be
formed resulted in a significant reduction of resis-
tance.7,9 More recently, the crystal structures of PfDHFR-
TS from the wild type and a quadruple drug-resistant
mutant strain N51I-C59R-S108N-I164L in complex
with WR99210, and the resistant double mutant C59R-
S108N in complex with Pyr, have been reported.10 The
analysis of these crystal structures confirmed and
strengthened the previously reported models of interac-
tion of antifolates with PfDHFR. It is now established
that resistant mutant PfDHFRs could be efficiently
inhibited by compounds that are much more flexible
than Pyr and Cyc (WR99210 is a good example of this
successful approach) and that are devoid of bulky groups
in proximity of the S108 residue.7,10

Very recently, we have developed and applied a
combined pharmacophore screening-molecular docking
strategy to discover new inhibitors of PfDHFR.11 The
strategy involved prefiltering the Available Chemicals
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Directory (ACD) database to search for molecules that
match specific 3D-pharmacophore requirements derived
by the analysis of the complexes of PfDHFR with the
three classical antifolate inhibitors Pyr, Cyc, and
WR99210. This process served to exclude the molecules
that lack the chemical features crucial for interacting
with key active site residues, mainly D54, and to reduce
the number of structures to be screened in the docking
process. The study led to the identification of 12 new
compounds whose chemical structures are completely
unrelated to classical antifolates but that inhibit the
wild type and resistant PfDHFRs harboring A16V,
S108T, A16V + S108T, C59R + S108N + I164L, and
N51I + C59R + S108N + I164L mutations.11

An interesting application of pharmacophore-based
approaches is that the experimentally determined activ-
ity of a set of known inhibitors can be used to drive the
generation of pharmacophores. In this context, phar-
macophores can be built under the condition that they
explain the observed trend of activity within a training
set of compounds. The advantage of this approach is
that the pharmacophores, once validated, can be used
to quantitatively predict the activity of new compounds.
Therefore, they constitute a powerful and fast tool to
estimate the biological activity of new potential ligands
in 3D databases of compounds. This methodology has
proven to be successful in a number of virtual screenings
of databases and libraries.12-18 Other approaches were
successfully applied to screen a large number of com-
pounds for DHFR activity. Wyss et al.19 explored a large
set of substituted 2,4-diaminopyrimidine derivatives
using structure-based (docking) and diversity-based
criteria and concluded that structure-based screening
provided a greater number of hits and significantly more
active inhibitors of S. aureus and S. pneumonia DHFRs
compared to the diversity-based screening. Jurs et al.20

used computational neural networks to generate quan-
titative structure-activity (QSAR) models for inhibitors
of rat liver, Pneumocystis carinii, and Toxoplasma
gondii DHFRs, employing a large number of topological,
geometric, and electronic descriptors.

The aim of the present work is to generate a predic-
tive pharmacophore model for PfDHFR inhibitors. To
develop the model, we have used the program Catalyst
4.721 and the Hypogen algorithm for automated phar-
macophores generation. Starting from a collection of
conformational models of PfDHFR inhibitors spanning
4-5 orders of magnitude in inhibition constants (train-
ing set), a pharmacophore model (hypothesis) able to
quantitatively correlate the estimated activities with the
measured activities was generated. The model was then
validated for its predictive ability of the activities of a
set of different PfDHFR inhibitors (test set) and other
inhibitors taken from the MDL Drug Data Report
(MDDR)22 database. We found that the pharmacophore
was able to correctly predict as active the 174 DHFR
inhibitors present in the MDDR database and to coher-
ently predict as inactive or moderately active the 882
inhibitors of aldose reductase, an enzyme in which the
structural requirements for inhibition clearly differ from
those of DHFR. Taken together, these results suggest
that the present pharmacophore can be useful to screen
databases and libraries of compounds to retrieve struc-

tures that can be used as new potentially active
candidates.

Results and Discussion

In the present work, a 3D-pharmacophore model with
quantitative predictive ability in terms of inhibition of
PfDHFR was derived.

A 3D pharmacophore is a collection of chemical
features in space that are required for a desired biologi-
cal activity. These include hydrophobic groups, charged/
ionizable groups, hydrogen bond donors/acceptors, and
others, properly assembled in 3D to reflect structural
requirements for interaction with the target. Even when
a protein structure-based approach is made possible by
knowledge of the structure of the target from crystal-
lography or modeling studies, a ligand-based approach
like that for 3D pharmacophores may provide an
alternative and complementary tool for drug design. We
recently proposed a combined structure-based and
ligand-based approach in which 3D pharmacophores
dictated by the structure of the target were used to filter
the ACD database for molecules possessing specific
requirements, after which docking of the resulting
focused database into the active site of PfDHFR was
performed.11 In this work, we extend our investigation
to the design of PfDHFR inhibitors by developing a more
sophisticated pharmacophore model with the additional
ability to quantitatively predict the inhibition constants.
One interesting application of this approach is that 3D
pharmacophores, once validated, can be used as 3D
queries in searching 3D databases to retrieve and rank
new potential ligands.

Pharmacophore Generation. Pharmacophores have
been generated with the Hypogen module of Catalyst
4.7 using a training set of 23 PfDHFR inhibitors, with
inhibition constants (Ki) ranging from 0.3 to 11 300 nM.
The training set included 15 derivatives of Pyr, Cyc, and
WR99210 found in the literature23,24 (compounds 1-1h,
2-2d, 3 in Table 1), 2 inhibitors retrieved by docking
studies on a PfDHFR model reported in the literature25

(compounds 4a,b in Table 1), and 6 new inhibitors not
related to classical antifolates disclosed in our previous
molecular docking study11 (compounds 5a-f in Table
1).

Hypogen allows a maximum of five features in phar-
macophore generation. Therefore, all the features in-
cluded in the Catalyst’s features dictionary were first
considered and subsequently reduced to a maximum of
5. First, we excluded all the chemical features that do
not map the molecules of the training set, like “positive
charge” (all inhibitors were considered in their neutral
form), “negative charge”, and “negative ionizable”. Also,
preliminary hypothesis generation including the “hy-
drogen bond acceptor” and “hydrogen bond acceptor
lipid” features revealed that these features are never
used in the pharmacophore models, though present and
properly mapped on many molecules of the training set;
therefore, the “hydrogen bond acceptor” and “hydrogen
bond acceptor lipid” features were removed from the list.
Moreover, considering that most of the molecules in the
training set possess both hydrophobic aromatic and
hydrophobic aliphatic groups, the specific “hydrophobic
aliphatic” and “hydrophobic aromatic” features were
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preferred over the more generic “hydrophobic” feature.
On these bases, the following five chemical features,

hydrogen bond donor (HBD), hydrophobic aromatic
(HYAr), hydrophobic aliphatic (HYAl), positive ionizable

Table 1. Chemical Structures, Experimental and Estimated Activities (Ki, nM), and Relative Errors of the PfDHFR Inhibitors in the
Training Set

4260 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 17 Parenti et al.



(PI), and ring aromatic (RA), were selected for hypoth-
esis generation.

A total of 10 pharmacophore models were thus gener-
ated. The difference between the null and the fixed
costs, which should be higher than 70 to indicate a
robust correlation, is 106 in our case. Pharmacophore
features, ranking scores, and statistical parameters
associated with the generated hypotheses are listed in
Table 2. The total hypothesis cost, expressed in bits, of
the 10 best hypotheses varies from 115.6 to 119.5. Such
a small range, covering only 4 bits, suggests that the
set of the generated hypothesis is homogeneous and that
the selected training set was adequate for pharmacoph-
ore design. Moreover, the finding that the total costs
were much closer to the fixed cost (102.5) than to the
null cost (208.6) indicates that significant models were
obtained. Notably, the correlation coefficients between
the experimental and the calculated activities range
between 0.954 and 0.938. Within the 10 models gener-
ated, three models consisted of five features while seven
models consisted of four features. All pharmacophores
have at least one hydrogen bond donor (HBD) function
(8 out of 10 have two HBD functions), one hydrophobic
aliphatic group (HYAl), and one positive ionizable (PI)
function (except for model 10). Six models include
aromatic features, four models with a hydrophobic
aromatic (HYAr) function and two models with a ring
aromatic (RA) function. As indicated by the small
difference in total cost, the generated hypotheses were
very similar in terms of composition and 3D orientation
of chemical features. All hypotheses were visually
inspected by fitting one of the most active compounds
in the training set (Pyr) on each generated model to
investigate recurrent features. Pyr mapped the PI
function with the N1 nitrogen and the HYAl function
with the p-chloro substituent (see below). Depending on
the model, the phenyl ring was mapped by RA or HYAr
functions. The major difference among the 10 models
was in the location of HBD features, which mapped both
the 2-amino and 4-amino groups of Pyr. Notably, both
amino groups form hydrogen bonds with PfDHFR in the
structure of the complex.7,10 Considering that all the
generated pharmacophores map the molecules of the
training set in a similar way, the first model (Hypo1),
characterized by the highest cost difference and the best
correlation coefficient, was chosen for subsequent analy-
ses. Hypo1 contains two hydrogen bond donors, one
positive ionizable feature, one hydrophobic aliphatic
feature, and one hydrophobic aromatic feature. The
activities estimated using Hypo1 are reported in Table

1 along with the experimental activities and the errors
(expressed as the ratio between the estimated and the
experimental activities). Comparison between the esti-
mated activities of the compounds in the training set
and their experimentally measured values shows that
20 molecules out of the 23 molecules in the training set
have errors less than 4, while the remaining three have
errors not higher than 13. These findings indicate a
reliable ability to estimate the affinity of the molecules
in the training set. Moreover, the cost difference be-
tween Hypo1 and the null hypothesis is 93 bits, corre-
sponding to more than a 90% chance of true correlation
in the data.26,27

Figure 1 shows Hypo1 mapped onto Pyr (Figure 1A),
Cyc (Figure 1B), and a dihydrazine inhibitor reported
by us11 (Figure 1C). Pyr (Figure 1A) maps onto the
selected pharmacophore as follows. The two hydrogen
bond donor functions are mapped onto the 2-amino and
4-amino substituents, the positive ionizable group is
mapped onto the N1 nitrogen, and the hydrophobic
aromatic function and hydrophobic aliphatic function
are mapped onto the p-chlorophenyl ring. Pyr deriva-
tives (compounds 1a-h) match the pharmacophore
similarly to 1, and their activities are correctly esti-
mated. A similar mapping was observed for Cyc (Figure

Table 2. Composition, Ranking Score, Statistical Parameters, and Cost Analysis (Expressed in Bits) of the Top 10 Generated
Hypothesesa

compd total cost
cost difference

(null cost - total cost) error cost rmsd correlation coefficient features

1 115.6 93.0 89.1 1.009 0.954 HBD, HBD, PI, HYAl, HYAr
2 115.8 92.8 89.7 1.035 0.951 HBD, PI, RA, HYAl
3 115.8 92.8 88.2 0.972 0.958 HBD, PI, RA, HYAl
4 115.8 92.8 89.7 1.036 0.951 HBD, HBD, PI, HYAl
5 116.2 92.4 89.8 1.041 0.951 HBD, HBD, PI, HYAl, HYAr
6 116.3 92.3 90.1 1.052 0.950 HBD, HBD, PI, HYAl
7 116.4 92.2 90.3 1.060 0.950 HBD, HBD, PI, HYAl
8 116.4 92.1 89.8 1.037 0.951 HBD, HBD, PI, HYAl
9 119.1 89.4 92.7 1.155 0.939 HBD, HBD, PI, HYAl, HYAr

10 119.5 89.1 93.1 1.169 0.938 HBD, HBD, HYAl, HYAr
a Null cost of top 10 hypotheses is 208.6 bits; fixed cost value is 102.5 bits.

Figure 1. Pharmacophore mapping of some molecules in the
training set. Pharmacophore model Hypo1 is aligned to 1 (Pyr)
(A), 2 (Cyc) (B), and 5f (C). Pharmacophore features are purple
for hydrogen bond donors (HBD), yellow for positive ionizable
(PI), green for hydrophobic aromatic (HYAr), and blue for
hydrophobic aliphatic (HYAl).
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1B), and its derivatives (compounds 2a-d). The esti-
mated activity for cycloguanil is 1.1 nM versus an
experimental activity of 1.5 nM. Figure 1C is an
example of pharmacophore mapping of a compound less
active than Pyr and Cyc; coherently, this compound does
not map all the chemical features encoded in Hypo1.
Compound 5f (Figure 1C) maps the two HBD functions
by means of the two hydrazine substituents, and the
HYAr function with the benzene ring, but it does not
map the PI and the HYAl functions. According to its
partial mapping, this compound is predicted to be less
active.

Pharmacophore Validation. Validation is a crucial
aspect of pharmacophore design, particularly when the
model is built for the purpose of predicting activities of
compounds in external test series. Within the com-
pounds of the training set, two statistical methods were
used to check the robustness of the correlation. In the
first test, the pharmacophore model Hypo1 was evalu-
ated for statistical significance using a randomization
trial procedure derived from the Fischer method. The
experimental activities of the molecules in the training
set were scrambled 19 times (using the catScramble
utility) to obtain spreadsheets with randomized activity
data. Nineteen hypothesis generations were then per-
formed using the scrambled training sets. Among the
190 resulting hypothesis (10 for each computational
run), none of these were found with a cost lower than
that of Hypo1. From a statistical point of view, this
results in at least a 95% probability that Hypo1 repre-
sents true correlation in the data. As a second statistical
test, the “leave-one-out” method, which consists of
recomputing the hypothesis by excluding from the
training set one molecule at a time, was performed. This
validation served to check if the correlation was tightly
dependent on one particular molecule in the training
set and to verify if the activity of each excluded molecule
is predicted to be in agreement with experiment. In each
case, we have achieved no significant differences be-
tween Hypo1 and the hypotheses resulting from the
exclusion of one molecule at a time, in terms of correla-
tion coefficient, composition of the pharmacophore, and
predicted activity of the excluded molecule.

Since the purpose of the pharmacophore hypothesis
generation is not only to predict the activity of the
training set compounds but also to predict the activities
of external molecules, a test set of PfDHFRs inhibitors
with known Ki values was prepared. Our target was to
verify if the pharmacophore was able to predict the
activity of test set molecules in agreement with the
experimentally determined value. For external predic-
tions, it is useful to classify the compounds using an
activity scale. Therefore, all the selected compounds
were classified as follows: <10 nM (+++++), 10-100
nM (++++), 100-1000 nM (+++), 1000-10000 nM
(++), 10000-100000 nM (+), >100000 nM (-). They
were then submitted to activity prediction. The activities
were estimated using Hypo1 as previously described.
The chemical structures, the experimental and esti-
mated activities, and activity scales are reported in
Table 3. Out of the 29 compounds of the test set, 9 were
predicted to be in the correct activity range with a mean
error of 4 ( 5, 17 were classified in an adjoining activity
range with a mean error of 33 ( 22, and only 3 were

estimated to be in separate activity ranges with a mean
error of 64 ( 55. By exclusion of compound 5j, which
had the worst prediction, the mean error in predicting
activity was 24 ( 22; therefore, given the inherent
simplicity of the pharmacophore approach and consider-
ing that experimental activities are also affected by
errors, we can conclude that the performance of the
pharmacophore in predicting activity is more than
satisfactory.

One of the main goals of 3D pharmacophores is the
generation of a predictive model useful for the identi-
fication of active and structurally diverse compounds
in large 3D databases of molecules.With the aim of
testing further the predictive ability of the generated
pharmacophore in database screening, we have per-
formed an activity estimate of two focused databases of
compounds extracted from the MDL Drug Data Re-
port.22 To make the test, the MDDR database was
filtered for dihydrofolate reductase and aldose reductase
inhibitors, and the two sets were placed in separate
focused databases. While the pharmacophore should be
able to classify as active most of the compounds in the
DHFR database, most of the AR inhibitors should result
in being inactive or poorly active. The rationale for this
is that AR is an enzyme in which the structural
requirements for inhibition differ markedly from those
of DHFR.28-30 The AR active site, in fact, is mainly
composed of hydrogen bond donors (Tyr48, His110, and
Trp111) that bind compounds such as negatively charged
carboxylates, as opposed to DHFR which is mainly
composed of hydrogen bond acceptors (Asp54 and the
two backbone carbonyls of Ile14 and Ile164) and pref-
erentially binds positively charged compounds such as
protonated Pyr and Cyc. The activities of the molecules
in the two reduced databases (174 for DHFR and 882
for AR) were predicted using Hypo1 (Table 4). For the
DHFR database, 31% of the molecules were predicted
to be in the highest activity range (<10 nM), 40% in
the activity range 10 nM to 1 µM, and only 29% in the
range 1-100 µM; none of the compounds were predicted
with activity worse than 100 µM. In contrast, none of
the molecules in the AR database were predicted with
activity better than 100 nM, and only 10% were pre-
dicted to be in the range 100 nM to 1 µM. The majority
of the compounds were classified in the lower activity
scale.

It is worth noting the ability of the present pharma-
cophore to pick up compounds selective for PfDHFR
versus DHFRs of different species. In fact, the DHFR
database from MDDR includes inhibitors of DHFRs of
different organisms, and the question is if and how the
pharmacophore is able to discriminate among them.
Unfortunately, selectivity data for the DHFR inhibitors
in MDDR are not available, but interesting observations
can be made. First, we found that all compounds based
on a 2,4-diaminepyrimidine scaffold substituted with
aromatic rings are predicted to be in the highest activity
range (+++++), in agreement with their structural
similarity with Pyr. Second, compounds with a 2,4-
diaminepteridine ring are predicted to be in lower
activity ranges (from ++ to +++). Remarkably, these
compounds structurally resemble methotrexate, a selec-
tive inhibitor of vertebrate DHFRs. Third, previous 3D-
pharmacophore modeling made with Catalyst on a set

4262 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 17 Parenti et al.



of Mycobacterium avium and human DHFRs16 resulted
in pharmacophores composed of chemical features that
significantly differ from the ones proposed here for
Plasmodium falciparum DHFR: two hydrogen bond
acceptors, one hydrophobic and one ring-aromatic fea-
ture for Mycobacterium avium DHFR, and three hydro-
gen bond donors and one hydrophobic feature for human
DHFR. To gain additional confidence on the ability of
our pharmacophore to discriminate between inhibitors
of DHFR of different species, two of the most potent

inhibitors from Debnath’s work16 were mapped on our
pharmacophore (Figure 2). Compounds 65 and 62 in ref
16, which are nanomolar inhibitors of Mycobacterium
avium and human DHFR, respectively, mapped only
three of the five functions of the pharmacophore (the
two hydrogen bond donors and the hydrophobic aro-
matic function), with estimated PfDHFR inhibition
constants of 1,4 and 1 µM, respectively. Therefore, there
is a good chance that the pharmacophore generated on
the PfDHFR training set is capable of retrieving com-

Table 3. Chemical Structures, Experimental and Estimated Activities (Ki, nM), Relative Errors, and Experimental and Estimated
Activity Scales (See Text) of the PfDHFR Inhibitors in the Test Set
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pounds selective for this particular target, though the
DHFR active site is generally conserved. Further work
will be needed to include selectivity criteria in pharma-
cophore design.

To check if the success in predicting activity is
somewhat dependent on molecular diversity, the phar-
macophore validation was finally completed by calcula-
tion of self-similarity using Tanimoto coefficients.31-33

We believe that this is a critical point in pharmacophore
screening of large, and usually redundant, databases
of compounds. The estimates included the training and
the test sets, the two MDDR subsets of inhibitors
(DHFR and AR), and the commercial database Available
Chemicals Directory (ACD). Tanimoto coefficients are
defined as NAB/(NA + NB - NAB), where NA and NB are
the number of bit sets on (i.e., 1) in bit strings (binary
representation of molecular structure) of molecules A
and B, respectively, and NAB is the number of bits that
are in common. The value of the Tanimoto coefficient
varies between 0 and 1. The lower the coefficient, the
lesser is the similarity between the molecules being
compared. The clustering of the molecules in the two
subsets of DHFR and AR inhibitors and in the ACD
database was evaluated for Tanimoto coefficients rang-
ing from 0 to 1 with 0.1 increments. Comparison of the
diversity of the five different databases was achieved
by dividing the number of clusters by the number of
entries in each database, and the results are graphically
reported in Figure 3. First, the number of clusters/entry
of the training and the test sets is always much higher
than that of the DHFR, AR, and ACD databases,

suggesting a better molecular diversity; this confirms
that the training and the test sets that were used in
the present work are nonredundant, thus meeting one
of the conditions for pharmacophore generation. Second,
even though the DHFR and AR databases show very
similar self-similarity (Figure 3), the pharmacophore
proved to be able to correctly discriminate between the
two classes of inhibitors. Third, even though the ACD
database contains more than 230 000 compounds, its
molecular diversity is rather close to that of the DHFR
and AR databases for which we obtained good activity
predictions, suggesting that our pharmacophore can be
applied to screen such a large databases. All these
encouraging results, taken together, highlight that the
generated pharmacophore can, indeed, be useful to
identify novel DHFR inhibitors from databases of
compounds.

A final comment on the structural significance of the
present pharmacophore is worth noting. We have com-
pared the pharmacophore mapping of Pyr with the
corresponding enzyme-inhibitor complex obtained from
homology modeling and crystallography.7,10 For com-
parison, Figure 4 shows Hypo1 superposed on Pyr
(Figure 4A), a diagram of the most important molecular
interactions established by Pyr with active site residues
(Figure 4B), and a 3D view of the active site of PfDHFR
in complex with Pyr (Figure 4C). It is interesting to note
that all key interactions between Pyr and PfDHFR (i.e.,
bidentate hydrogen bonds with the carboxylate side
chain of D54 via the N1-protonated nitrogen and the
N2 amino groups, hydrogen bonds with the backbone
carbonyls of I14 and I164 via the N4 amino group,
stacking interaction of the phenyl ring with nicotina-
mide ring of NADPH, and hydrophobic interactions close
to residue S108)7,10 are all encoded in the pharmacoph-
ore. As can be inferred from the comparison of parts
A-C of Figure 4, the positive ionizable function located
at N1 represents a protonated amine (Pyr, Cyc, and
WR99210 bind in protonated form) able to form a
charge-reinforced hydrogen bond with residue D54. The
adjacent hydrogen bond donor function (mapped on the
N2 amino) corresponds to the second hydrogen bond
with D54 and completes the bidentate hydrogen bonding
with this residue as observed in both Pyr and WR99210
complexes.10 The pharmacophore also includes a hydro-

Table 4. Activity Predictions of the DHFR and AR Inhibitors
Selected from MDDR Database Using Hypo1a

predicted activity
range (nM)

no. of
MDDR
DHFR

inhibitors

no. of
MDDR AR
inhibitors

% of
DHFR

inhibitors
% of AR

inhibitors

<10 (+++++) 54 0 31 0
10-100 (++++) 13 0 8 0
100-1000 (+++) 56 92 32 10
1000-10000 (++) 39 102 22 12
10000-100000 (+) 12 560 7 63
>100000 (-) 0 128 0 15

a The table shows the number, and the related percentages, of
molecules in each predicted activity range. The DHFR and AR
databases contain 174 and 882 molecules, respectively.

Figure 2. Selectivity of the pharmacophore. The figure shows
how the PfDHFR-derived pharmacophore maps two potent
inhibitors of different species, one of Mycobacterium avium
DHFR (A) (compound 65 in ref 16) and one of human DHFR
(B) (compound 62 in ref 16). In both cases, only three of the
five functions of the pharmacophore could be mapped, and the
activities of these molecules were estimated to be much lower
than those of Pyr and Cyc.

Figure 3. Molecular diversity analysis. Molecular diversity
of the training and test sets, of the two databases of DHFR
and AR inhibitors and of the ACD database according to
Tanimoto coefficients analysis. The number of clusters divided
by the number of databases entries is plotted against the
Tanimoto coefficient values.
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gen bond donor at the N4 amino, which serves as the
hydrogen bond donor for the backbone carbonyl of I14
in the structures. Because Catalyst cannot map more
than one hydrogen bond donor function per amino
group, a function directed toward I164 could not be
located. The hydrophobic aromatic function (mapped
onto the phenyl ring) encodes for aromatic-aromatic
interactions with the nicotinamide ring of the cofactor
NADPH, which is close to the phenyl ring in the crystal
structures.10 Finally, the hydrophobic aliphatic function
(mapped on the para chlorine atom) accounts for hy-
drophobic contacts with the methylene group of the
S108 side chain (the S108 hydroxyl, in turn, is hydrogen-
bonded to the cofactor). In conclusion, the chemical
features that a molecule should possess in order to be a
good enzyme inhibitor are all represented in our phar-
macophore, although it has been generated using a
ligand-based approach and without considering struc-
tural information of the target.

Conclusions
The work presented in this study shows that, starting

from a set of PfDHFR inhibitors with a broad range of
activity, a 3D pharmacophore with quantitative predic-
tive ability in terms of activity can be obtained.

The best-generated pharmacophore (Hypo1) consists
of a five-feature model (two hydrogen bond donors, one
positive ionizable feature, one hydrophobic aliphatic
feature, and one hydrophobic aromatic feature). Hypo1
correctly estimates the activity of all the molecules of
the training set and shows the best correlation between
estimated and experimental activities and the best
statistical significance among all of the generated
models. Two validation methods, the Fisher test and the
“leave-one-out” test, confirmed the statistical signifi-
cance of the 3D pharmacophore and excluded the chance
of a casual correlation between predicted and experi-
mental activity.

The model was predictive not only within the training
set but also for a test set of 29 different PfDHFR
inhibitors, and with acceptable error. Moreover, it was
able to discriminate, and correctly estimate as active
or inactive, a number of various DHFR and AR inhibi-
tors extracted from the MDDR database. The validation
made on MDDR inhibitors revealed that our model is
indeed predictive for compounds that are different from
those used to generate and validate the pharmacophore
and that it is able to retrieve selective inhibitors of
Plasmodium falciparum DHFR. The evaluation of mo-
lecular diversity of the databases by means of a Tan-
imoto approach provided confidence that the success in
predicting activity does not depend on the diversity or
similarity of the molecules in the databases. This finding
has important implications for the screening of large
and usually redundant databases of compounds.

Finally, even though the pharmacophore was gener-
ated using a ligand-based approach, the type and spatial
location of the chemical features in our pharmacophore
agrees perfectly with the pattern of enzyme-inhibitor
interactions identified from homology modeling and
crystallography.7,10 Therefore, the pharmacophore com-
pletely fulfills the requirements for an effective interac-
tion of the inhibitors with the active site of PfDHFR.

Together, these results suggest that our model can
be used as a 3D query in large 3D databases of
compounds to identify and quantitatively estimate new
potential DHFR inhibitors. Compared with other drug
discovery tools, the pharmacophore approach has the
significant advantage that it is fast and able to quan-
titatively estimate the activity of large number of
compounds in a short amount of time. Our model is
expected to be useful not only in the identification of
new inhibitors from 3D databases but also in the
development and optimization of a known series of
inhibitors; in particular, the model can be useful to
estimate the potential activity of virtual libraries of
newly designed PfDHFR inhibitors prior to synthesis
or biological testing.

Materials and Methods
Training and Test Sets. In automated pharmacophore

generation with Catalyst, the selection of the molecules in the
training set must follow certain rules; the minimum number
of molecules necessary to ensure statistical predictive power
should be 16, the activity data should span over 4-5 orders of

Figure 4. Comparison between generated pharmacophore
mapping and active site interaction of Pyr. (A) Pharmacophore
model Hypo1 aligned with Pyr, one of the most active
compounds in the training set. Pharmacophore features are
color-coded: purple for hydrogen bond donors (HBD), yellow
for positive ionizable (PI), green for hydrophobic aromatic
(HYAr), and blue for hydrophobic aliphatic (HYAl). (B) Dia-
gram showing the most important interactions between Pyr
and PfDHFR active site residues as inferred from the enzyme
structures. (C) 3D view of active site of PfDHFR in complex
with Pyr. The dashed lines show the hydrogen bonds with key
residues D54, I14, and I164.
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magnitude, each order should be represented by at least three
compounds, and finally, each compound in the training set
should provide new information concerning binding modalities
relevant for predicting biological activity.34 On these bases, a
training set of 23 inhibitors of PfDHFR, with inhibition
constants (Ki) between 0.3 and 11 300 nM, was defined. These
include 15 derivatives of Pyr, Cyc, and WR99210 found in the
literature,23,24 2 inhibitors reported in a previous study,25 and
6 of the 12 new inhibitors disclosed in our previous docking
study.11 The test set used for the validation of the pharma-
cophore model consisted of 23 Pyr and Cyc derivatives found
in the literature23,24 and the remaining 6 inhibitors reported
in our previous work.11

All the compounds in the training set and test set were built
using the 2D and 3D sketcher of Catalyst; a conformational
set was generated for each molecule using the poling algorithm
and the “best-quality conformational analysis” method, based
on CHARMm force field.35 All conformations within 20 kcal/
mol in energy from the global minimum were saved. An
uncertainty factor of 3, representing the ratio range of
uncertainty in biological activity value, was set for each
compound.

Pharmacophore Generation. The chemical features se-
lection is an important step in pharmacophore generation.
Each feature in Catalyst is defined in a “feature dictionary”
by a chemical function, a “weight” factor, a location and
orientation in 3D space, and a tolerance in location. Features
in Catalyst include hydrogen bond acceptor (HBA), hydrogen
bond acceptor lipid (HBAl), hydrogen bond donor (HBD),
hydrophobic (HY), hydrophobic aliphatic (HYAl), hydrophobic
aromatic (HYAr), negative charge (NC), negative ionizable
(NI), positive charge (PC), positive ionizable (PI), and ring
aromatic (RA). In our case, the generic functions HYAr and
PI were modified to map specific functional group in some
molecules of the training set. Catalyst allows selection of up
to a maximum of five features and definition of the minimum
and maximum number of each function to be used. As
explained in detail in Results and Discussion, the following
five chemical features were selected: hydrogen bond donor
(HBD), hydrophobic aromatic (HYAr), hydrophobic aliphatic
(HYAl), positive ionizable (PI), and ring aromatic (RA).

During the pharmacophore generation, the “weight varia-
tion” option was not allowed. The feature “weights”, which
represent the orders of magnitude in terms of activity to which
the presence of a hypothesis feature contributes, was set as
default.

To improve the correlation between estimated and experi-
mental activity, the location tolerance was optimized during
generation, using the “variable tolerance” option set to 1. This
option compensates for deficiencies in the conformational
coverage of flexible compounds and tightens the tolerances
when large tolerance values are not needed.

Given that the molecules in our training set are generally
small, the minimum spacing between two neighboring func-
tions was set to 1 Å instead of the standard value of 3 Å.

During a hypothesis generation, Catalyst considers and
discards many thousands of models and selects the best
hypotheses from many possibilities by applying a cost analysis.
For each model three cost values, expressed in bits, are
assessed: the “null”, the “fixed”, and the “total” costs. The null
and the fixed costs are calculated prior to model generation
based on the training set data, the features selected, and the
run options. The fixed cost corresponds to the simplest model
that fits all data perfectly, while the null cost corresponds to
the model with no features and estimates activity as the
average of the activity data of the training set. To be
significant, a pharmacophore should have a difference between
the null and the fixed costs of at least 70 bits. The total cost
is calculated as the sum of the weight, error, and configuration
costs for each generated model. The weight cost increases in
a Gaussian form as the weight of the features in the model
deviates from an ideal value (2.0), thus favoring the hypothesis
where the feature weight is close to 2. The error cost increases
as the rms difference between estimated and measured activi-

ties for the training set increases and favors the model with
the better correlation coefficient. The configuration cost cor-
responds to the entropy of hypothesis space and depends on
the complexity of the hypothesis space being optimized. The
total cost lies between the fixed and the null costs. To be
statistically significant, one hypothesis should have a total cost
close to the fixed cost and far from the null cost. When the
difference between the total cost and the null cost is 60 bits
or higher, the predictive correlation probability is 90% or
higher. Cost differences of 40-60 bits lead to a predictive
correlation probability of 75-90%, while for values below 40
the probability decreases to less than 50%.26,27

Pharmacophore Validation. Several validation tech-
niques were used to test the robustness, the accuracy, and the
statistical significance of the pharmacophore hypothesis gener-
ated from the training set molecules. The first validation
technique was based on Fisher’s randomization test and was
done using the CatScramble utility of Catalyst/HypoGen
module. The purpose of this test was to validate the correlation
between the structures of the training set molecules and their
biological activities. With this aim, the activity values were
reassigned after randomization using the CatScramble utility
and new spreadsheets were created. Different levels of statisti-
cal significance can be achieved by varying the number of the
scrambled spreadsheets obtained. A 95% confidence level was
chosen for our validation, corresponding to 19 new training
sets having randomized activity data. Nineteen hypothesis
generation runs were thus performed on the scrambled train-
ing sets using the same features and parameters used to
generate the original pharmacophore. The second statistical
validation was the “leave-one-out” cross-validation test. This
method checks if the correlation between experimental and
estimated activities is tightly dependent on one particular
molecule of the training set by recomputing the pharmacoph-
oric model with the exclusion of one molecule at a time; 23
new training sets were built, each composed of 22 molecules,
and 23 HypoGen computations were performed under the
usual conditions. For each run, the hypothesis having the best
total cost was used to estimate the activity of the excluded
molecule and to calculate the new correlation coefficient. The
third validation consisted of predicting the activities of com-
pounds included in an external test set. The test set was
prepared as described in the training and test set section and
subjected to activity prediction using the best-generated
pharmacophore.

To get additional confidence on the usefulness of the
pharmacophore model for database screening, we validated our
model for its ability to predict the activities of dihydrofolate
reductase and aldose reductase inhibitors derived from the
MDL Drug Data Report.22 MDDR is an annotated database
covering the patent literature, journals, meetings, and con-
gresses, which contains over 132 000 biologically relevant
compounds and well-defined derivatives such as drugs launched
or under development phase. The MDDR database was filtered
for DHFR and AR inhibitors, and the two sets were placed in
two separate databases in MDL format. The two subsets of
inhibitors were imported in Catalyst and converted into
Catalyst databases using the utility CatDB; for each molecule,
a conformational set within 20 kcal from the global minimum
was generated. Pharmacophore mappings and activity predic-
tion of the DHFR and AR inhibitors were done using the
Catalyst “compare fit” option.

Molecular Diversity Analysis. The structural diversity
of the training and test sets, of the two DHFR and AR
databases as described above, and of the Available Chemicals
Directory database was determined and compared. The diver-
sities of the five databases were estimated by means of a
Tanimoto distance metric analysis.31 First, counterions were
removed and each database was converted into smiles format,
then fingerprints were calculated using the 458 bit descriptors
(E_SCREEN) implemented in the CACTVS system.32 The
Tanimoto analysis of the fingerprints was performed using
SUBSET 1.0,33 which estimates the molecular diversity of a
database using a clustering approach. The number of clusters
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was calculated for Tanimoto coefficients ranging from 0 to 1,
with 0.1 increments. Comparison of the diversity of the five
databases was achieved by dividing the number of clusters by
the number of entries in each database.

All molecular modeling work was performed on Silicon
Graphics O2 workstations.
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